趣味類型實用軟件
標(biāo)簽: 微軟識花 趣味 學(xué)習(xí) 官網(wǎng):http://www.dsp0v.cn
《微軟識花安卓版》是很不錯的一款趣味類型的識圖類型的軟件,軟件的核心玩法就是大家喜愛的特色的識圖類型的,這款軟件只不過是識花了,所以變得十分有趣,軟件很好玩,能學(xué)到很多知識,喜歡多玩家別錯過了!
微軟識花app是微軟官方推出額一款花草識圖軟件,不僅能讓你不需要百度知道就能學(xué)習(xí)到更多的花卉知識,也能一款秒懂花語的裝逼神器,國慶節(jié)賞花必備!
微軟亞洲研究院攜手中國科學(xué)院植物研究所、科學(xué)出版社聯(lián)合出品的“微軟識花”app,其智能花卉識別和知識系統(tǒng)將成為你的“花兒百寶箱”。只需拍攝花兒照片或選取手機圖庫中的花兒圖片,由植物專家標(biāo)定的龐大花卉數(shù)據(jù)庫將快速、精確地識別花兒,并通過花語、藥用價值等信息,講述關(guān)于花兒的小秘密,讓你一秒變身識花達人!
花兒知識:花卉的名稱、分類、花語、藥用價值……所有你想知道的,都在這里。
拍照識花:打開應(yīng)用并拍照,即可馬上識別該花卉。
圖庫識花:將手機相冊里的花卉圖片導(dǎo)入本應(yīng)用,即可馬上識別該花卉。
【精確識別:不僅僅是人工智能】
研究員們基于以上人類觀察物體、對物體的種類進行判斷的過程,獨具創(chuàng)新地開發(fā)了一個自動的視覺多級注意力模型,并結(jié)合深層神經(jīng)網(wǎng)絡(luò)技術(shù),用于圖像的處理與識別。
【弱監(jiān)督學(xué)習(xí)與大規(guī)模數(shù)據(jù)】
弱監(jiān)督學(xué)習(xí)的方式既可以兼顧到數(shù)據(jù)質(zhì)量的不足,又可以保證用于訓(xùn)練的數(shù)據(jù)量的龐大,最終保證了入駐每個人手機中的微軟識花應(yīng)用的準(zhǔn)確性。
【攜手植物專家:跨界玩創(chuàng)新】
中科院植物所為微軟識花提供了大量的專業(yè)數(shù)據(jù),微軟的技術(shù)也在不斷加速交叉學(xué)科的新突破。
【技術(shù)讓生活更便捷】
想隨身攜帶一位植物專家嗎?想聽聽Ta的花語和秘密嗎?快去試一試吧!
邂逅一枝美麗的花兒,卻不知道它的名字,它的特征,它的動人花語,這難道不是一件萬分遺憾的事?
微軟亞洲研究院攜手中科院植物所推出“微軟識花”app,其智能花卉識別和知識系統(tǒng)將成為你的“花兒百寶箱”。只需拍攝花兒照片或選取手機圖庫中的花兒圖片,由中科院植物所專家標(biāo)定的龐大花卉數(shù)據(jù)庫將快速、精確地識別花兒,并通過花語、藥用價值等信息,講述關(guān)于花兒的小秘密,讓你一秒變身識花達人!
同時,微軟識花是一款離線應(yīng)用,無需聯(lián)網(wǎng),意味著你可以在登山途中或其它無法連接互聯(lián)網(wǎng)的任意場所使用。
“哇,這朵花好美!這是什么花?”
“額,我來上網(wǎng)搜一下……”(然而搜索起來卻無從下手)
很多人都遇到過這種措手不及的小尷尬,尤其是帶著小孩子或者小伙伴旅游和遛彎時,只能一臉茫然地面對Ta的好奇心。畢竟植物專家說,全世界已經(jīng)發(fā)現(xiàn)的花至少有25萬種。即使你知道是什么種類,也很難說出關(guān)于花的故事來。
而微軟亞洲研究院推出最新款智能識別應(yīng)用——一位可以隨身攜帶的植物專家“微軟識花”,可以幫你破解花的秘密。拿出手機,打開App,拍張照片,一鍵識別,隨手解救好奇心。微軟識花應(yīng)用所能識別的花卉覆蓋了中國的絕大多數(shù)花卉。微軟識花的打開方式應(yīng)該是這樣的……
首先,打開微軟識花應(yīng)用,現(xiàn)場拍攝或從手機圖庫里打開一張花兒的照片,將花朵移動至指定位置。然后,應(yīng)用會自動識別出花朵的名稱和類型,并顯示出匹配度,告訴你花的基本特征、藥用價值等。以上動作完全可以在不聯(lián)網(wǎng)的條件下實現(xiàn)!這就意味著,當(dāng)你在流量捉襟見肘的情況下,照樣可以用沒有網(wǎng)的手機識別出新奇的花卉品種。
知道是什么花還不過癮?別急,“微軟識花”有一個獨特的“花語”功能。
賞花要懂花語,花語是人們賦予花的一種象征,可以用來表達人的某種感情與愿望。不同的花有不同的花語,在沒有了解花語時就亂送別人鮮花,結(jié)果只會引來別人的誤會。花語雖無聲,但此時無聲勝有聲。對于每一種花,系統(tǒng)都會附上一段娓娓道來的花語。
比如“六道木”的花語是“對你的念想沿六條直線自下而上,終于在頂端開出了最好看的花”,是不是恰似你現(xiàn)在的心情呢?
一鍵分享到朋友圈,用最適合你心情的曼妙花語來表達你此刻的心意吧!
大家在使用時或許還能發(fā)現(xiàn)藏在應(yīng)用里的兩個彩蛋。
微軟識花應(yīng)用帶有一個專門的花兒搜索包,將400種園藝花卉收錄在系統(tǒng)中,按字母順序排序。也許有的花你只聽說過名字,沒見過“真容”,那么這款應(yīng)用就可以幫你提前見識一下。只有沒聽過,沒有搜不到。400種花基本涵蓋了我國城市綠化和公園常見的花卉品種,想看哪種花都可以搜索到。
另外,如果你玩膩了識花,微軟識花還有另一個有趣的功能等待你開掘:那就是對其他常見的日常物體進行識別。拿件衣服、擺個文具來測測這款應(yīng)用的“智商”,聽起來也是挺有趣的事呢!對于常用物體的識別采用了微軟亞洲研究院最先進的圖像識別技術(shù)。在內(nèi)部測試中,識別精度可以達到90%。
精確識別:不僅僅是人工智能
除了大火的博物君,在微博上還有許多類似的賬號如@深山蟲吟ChenZ、@果殼自然控、@開水族館的生物男等等也吸引著大家的眼球,這些不同的賬號背后代表的通常是某一類垂直的專業(yè)知識。這些賬號的大受歡迎也從側(cè)面說明了精細(xì)物體識別有著極高的門檻,對于人類而言需要的是長時間的訓(xùn)練和知識的積累,此外還要求極為細(xì)致的觀察能力。例如對于人們來說,可能很輕而易舉地看出圖片上的植物到底是花還是草,但卻很難判斷出花兒的具體種類。而由于計算機識別圖像的方式原理與人類有所不同,因此這一類精細(xì)物體識別對計算機而言則相對簡單。
這款應(yīng)用使用流程很簡單,背后的技術(shù)卻不見得那么簡單。市場上已經(jīng)有一些識貓狗等動物的應(yīng)用,而相比于識貓識狗,花的識別更具有挑戰(zhàn)性。狗的種類不超過300種,而對花來說,已經(jīng)被發(fā)現(xiàn)的野生植物就有幾十萬種,還有大量奇形怪狀的新品種在不斷地涌現(xiàn)。而微軟亞洲研究院多媒體搜索組的研究員們在精確識別技術(shù)方面有著長久的積累,他們正希望做這樣一些有挑戰(zhàn)性的事情。
這款A(yù)pp主要應(yīng)用了深度學(xué)習(xí)技術(shù)。研究員們借助中科院植物所提供的260萬張花的鑒定照片,對機器識別模型進行訓(xùn)練。但是在弱監(jiān)督的條件下,對260萬張圖片進行機器學(xué)習(xí)是一個相對低效率的過程,因為人的抽象能力和想象能力是計算機很難做到的。研究員傅建龍介紹道:“傳統(tǒng)的深度學(xué)習(xí)技術(shù)是一個自下而上的學(xué)習(xí)過程,讓計算機在底層的高維數(shù)據(jù)里學(xué)習(xí)隱藏的高層語義表達。如果我們能在人工智能之外加入人類智能,對機器的深度學(xué)習(xí)進行指導(dǎo),把自下而上和自上而下的學(xué)習(xí)過程相結(jié)合,會大大提升深度學(xué)習(xí)的精度和效率。”把人類的經(jīng)驗和人工智能相結(jié)合,才能迸發(fā)出增強智能的魔力。研究員們正是在這方面下了很大功夫。
總所周知,分類學(xué)家對種類繁多的生物界做了一個階層劃分,即制定了“界門綱目科屬種”的分類系統(tǒng),做精確識別也需要一層一層遞進,才能提高識別的準(zhǔn)確性。在識花方面,主要是需要機器對“科-屬-種“三個基本層級有一個提前的認(rèn)知。研究員先加入一個花卉本身的層級結(jié)構(gòu),將它作為一種先驗的知識,來指導(dǎo)機器學(xué)習(xí)。研究員們考慮到層級的信息,例如,不同的科的植物之間會不會有相關(guān)性?于是他們通過捕捉這樣一種相關(guān)性來訓(xùn)練模型。
按照“科-屬-種”的層級劃分,首先確定花的“科”,再通過一些細(xì)節(jié)的特征,例如花瓣的分布、形態(tài)等來確定它歸于哪個“屬”,最后通過花瓣的顏色、紋理等更為細(xì)微的特征來具體判斷它屬于哪個“種”。一朵花就是這樣被計算機識別出來的,當(dāng)然每一種花的識別過程也是“因花而異“的。
那么人類是如何識別出花的種類的呢?假設(shè)現(xiàn)在擺在我們面前的是一朵花的照片。我們首先會注意到這張圖片中花出現(xiàn)的區(qū)域,確定這張圖片上是否存在花,以及一共有幾朵花,并排除旁邊的草地等干擾項。接下來,你可能會將你的注意力放在花的一些關(guān)鍵特性上,如花的顏色、形狀、大小等等。通過這些關(guān)鍵部位的特征,例如花是單朵頂生,顏色為黃色白色相見,形狀呈杯型或碗型等特征,可以大致確定這是一朵郁金香。
研究員們基于以上人類觀察物體、對物體的種類進行判斷的過程,獨具創(chuàng)新地開發(fā)了一個自動的視覺多級注意力模型,并結(jié)合深層神經(jīng)網(wǎng)絡(luò)技術(shù),用于圖像的處理與識別。第一級是物體級別的關(guān)注,即自動關(guān)注到圖片中花所在的區(qū)域,而排除其他不相關(guān)的因素,如雜草等。第二級之后則是由粗到精的部位級別的關(guān)注,即關(guān)注到花的具體部位,然后對花朵的部位特征進行學(xué)習(xí)和識別。
眾所周知,深層神經(jīng)網(wǎng)絡(luò)技術(shù)在處理圖像問題上的效果顯著。但一直以來,深層神經(jīng)網(wǎng)絡(luò)都被稱之為黑盒子,大家對它了解都不算充分,深層神經(jīng)網(wǎng)絡(luò)的理論方面還有待突破。但當(dāng)黑盒子打開之后,大家能從中學(xué)習(xí)到很多的東西。研究員們通過一些可視化的策略,了解這些網(wǎng)絡(luò)究竟學(xué)到了什么樣的內(nèi)容,看到每個卷積模板(filter)都代表什么樣的語義。其實,卷積神經(jīng)網(wǎng)絡(luò)的中間層一些部位的信息已經(jīng)可以自動學(xué)出來了,我們就把這些自動學(xué)出來的的模式(pattern)自動進行歸類。這些歸類出來的每一個聚類都可以理解成是花的某一個部位的集合。雖然模型本身并不知道其中的某一個聚類究竟是花瓣還是葉子或是花蕊,但它已經(jīng)知道這是屬于某個部位的信息,這樣就構(gòu)建了部位檢測模型。將由原始圖像生成的每個候選框都經(jīng)過每個部位檢測器,而每個部位檢測器則會自動檢測出這個候選框內(nèi)最接近這個部位的區(qū)域,這樣就實現(xiàn)了第二級——部位級別的關(guān)注。
弱監(jiān)督學(xué)習(xí)與大規(guī)模數(shù)據(jù)
提高圖像識別系統(tǒng)的準(zhǔn)確度,數(shù)據(jù)量始終是一個繞不開的關(guān)鍵問題。數(shù)據(jù)量越大越準(zhǔn)確,那么最終訓(xùn)練出來的模型準(zhǔn)確度也會相應(yīng)地提升。對于花朵識別問題,研究員們起初是邀請一些植物學(xué)家們對花的圖像進行種類標(biāo)注。但研究員很快發(fā)現(xiàn),這種標(biāo)注數(shù)據(jù)的方式無論是從成本上還是時間效率上都算不上是一個最佳的選擇。那么,有沒有可能通過群體的智慧來解決這個問題呢?研究員們最終選擇從由植物專家提供數(shù)據(jù)的專業(yè)網(wǎng)站爬取數(shù)據(jù),并利用弱監(jiān)督學(xué)習(xí)(Semi-supervised learning)的方式進行數(shù)據(jù)的訓(xùn)練。
監(jiān)督學(xué)習(xí)(Supervised learning)和無監(jiān)督的學(xué)習(xí)(Unsupervised learning)概念大家已經(jīng)不算陌生。前者會對數(shù)據(jù)進行標(biāo)注,而后者則是對輸入的數(shù)據(jù)集直接進行建模。研究員們在這里采用弱監(jiān)督學(xué)習(xí)的方式是希望模型能夠生成比較準(zhǔn)確、清晰的標(biāo)注,但前期的數(shù)據(jù)并不能完全提供這一類的信息,需要模型自己去推斷。在看圖識花的這個例子里,弱監(jiān)督學(xué)習(xí)中的“弱”包含了這幾個方面。第一點弱的地方在于用于機器學(xué)習(xí)的數(shù)據(jù)集只有圖像級別的標(biāo)注,即植物學(xué)家在標(biāo)注圖片時只標(biāo)注了這張圖片上有什么花,但是并沒有標(biāo)注花在哪,也并沒有標(biāo)注出最需要注意的關(guān)鍵識別區(qū)域在哪里(但人類判斷的最關(guān)鍵的識別區(qū)域未必是計算機認(rèn)為的最關(guān)鍵的識別區(qū)域)。其次,研究員使用的網(wǎng)絡(luò)上大規(guī)模標(biāo)注的數(shù)據(jù)的時候,這些數(shù)據(jù)并不一定是準(zhǔn)確的,而且這類數(shù)據(jù)有著很多的噪聲。此外,這些數(shù)據(jù)大多比較零散,結(jié)構(gòu)化并不是很好。因此,弱監(jiān)督學(xué)習(xí)的方式既可以兼顧到數(shù)據(jù)質(zhì)量的不足,又可以保證用于訓(xùn)練的數(shù)據(jù)量的龐大,最終保證了入駐每個人手機中的微軟識花應(yīng)用的準(zhǔn)確性。
攜手植物專家:跨界玩創(chuàng)新
正如前面所言,植物專家的幫助對提高花卉的識別能力起到了基礎(chǔ)支持的作用。這次“微軟識花 “app的開發(fā)是微軟亞洲研究院和中國科學(xué)院植物研究所多年來學(xué)術(shù)合作的成果。中科院植物所不僅提供了260萬張花卉的識別圖片,還提供了經(jīng)過專家鑒定的中國常見花列表。而微軟亞洲研究院的研究員們利用先進的技術(shù)開發(fā)出識別花卉的算法,并把識別結(jié)果挑選出來,經(jīng)植物所專家鑒定。經(jīng)過了兩三次迭代的過程,才得到了最終訓(xùn)練機器識別的樣本集合。中科院植物所植物專家的幫助對提高花卉的識別能力起到了基礎(chǔ)支持的作用。此外,科學(xué)出版社為我們提供了花卉的專業(yè)知識。
這次合作緣于一次機緣巧合。去年,在中科院植物所舉辦的一次研討會上,微軟亞洲研究院常務(wù)副院長芮勇博士展示了研究院在計算機視覺方面的最新技術(shù),植物所的專家很感興趣,希望可以把最新的識別技術(shù)應(yīng)用到我國的植物調(diào)研和科研中去。植物所的專家有這樣一個初衷,那就是了解全中國的植被分布。之前由基層調(diào)研人員通過翻閱手冊來判斷各地有哪些花,但是基層人員的專業(yè)素養(yǎng)不可控。如果能夠借助計算機技術(shù)幫助他們識別,那么速度和廣度要提高很多。而微軟亞洲研究院在深度學(xué)習(xí)算法和計算機視覺方面有著領(lǐng)先的技術(shù)基礎(chǔ),可以幫助他們做一些目前做不到的事。同時微軟亞洲研究院的研究員們也希望借此機會,將精確識別技術(shù)更好地得到應(yīng)用,并且在應(yīng)用中進行進一步錘煉和創(chuàng)新。
跨學(xué)科的學(xué)術(shù)合作也是微軟亞洲研究院長期耕植的領(lǐng)域。“對于任何物種的分類都是艱難的,”芮勇表示。“關(guān)于這項技術(shù)的難點在于讓計算機如何辨別細(xì)微的差異。而真正大的數(shù)據(jù)都在跨學(xué)科領(lǐng)域里產(chǎn)生的。我們與中科院植物所的這次合作為微軟識花提供了大量的專業(yè)數(shù)據(jù),讓我們的計算機技術(shù)得以更好地應(yīng)用。同時,微軟的技術(shù)也在不斷加速交叉學(xué)科的新突破。”
技術(shù)讓生活更便捷
一款看似簡單的應(yīng)用背后卻是微軟長期以來在機器學(xué)習(xí)領(lǐng)域的技術(shù)積累和跨界合作的成果。微軟亞洲研究院不僅重視基礎(chǔ)研究的突破,還注重將基礎(chǔ)研究的成果應(yīng)用到更加廣闊的生活和學(xué)術(shù)中去,讓技術(shù)為人們真正帶來改變。
在談及微軟識花之后的技術(shù)走向時,研究員傅建龍?zhí)岬搅硕鄠發(fā)展方向。第一點是加入更多花卉的種類,將識別的范圍拓展到多個國家,并且提供多語言的產(chǎn)品以及提供更多的平臺。今后出國旅游也可以帶上這位植物專家,幫你識別萬千花卉。第二點是提高識別的精確度,在學(xué)術(shù)合作中推進數(shù)據(jù)庫在質(zhì)量和范圍上的提升。第三點是拓展產(chǎn)品的科普功能,豐富關(guān)于花的知識,提供更多的互動功能,從而實現(xiàn)更好的科普。不僅讓你知道是什么花,還為你拓展在博物知識方面的涉獵,讓你離“博學(xué)之才“更近一步。第四點,研究員希望持續(xù)不斷地精進識別算法模型,并實現(xiàn)離線版本與在線版本的無縫切換,讓微軟識花這一類精細(xì)物體識別技術(shù)也能以API的形式開放出來,登陸在像微軟認(rèn)知服務(wù)(Microsoft Cognitive Services)一樣的人工智能服務(wù)平臺,造福更多的開發(fā)者們。最后一點是希望該項目能對專業(yè)研究者的科學(xué)研究帶來便利,比如幫助植物專家發(fā)現(xiàn)新的物種、幫助基層調(diào)研人員精確識別花卉品種等。不管你是普通大眾,還是專家學(xué)者,讓學(xué)術(shù)研究服務(wù)更多的人,一直是微軟亞洲研究院的目標(biāo)所在。
1、現(xiàn)場拍照或從相冊選取照片;
2、移動或縮放照片,使要識別的花卉定位在虛線框內(nèi);
3、點擊絲帶,獲得匹配信息;
4、點擊卡片,獲得更多花卉信息;
5、和好友共賞您的識花結(jié)果,或者給出您的意見。
想隨身攜帶一位植物專家嗎?想聽聽Ta的花語和秘密嗎?快去試一試吧!
正所謂不想當(dāng)學(xué)霸的同學(xué)不是好學(xué)生,我們的目標(biāo)是人人都是學(xué)霸,擁有這些軟件,早日實現(xiàn)你的夢想,不再是老
進入專區(qū)>以前的學(xué)習(xí)只能上課考老師,下課靠自己,或者一些輔助學(xué)習(xí)機等等,但是現(xiàn)在手機的功能越來越強大,什么軟件
進入專區(qū)>專業(yè)的游戲下載、綜合門戶網(wǎng)站
Copyright 2009-2016 www.dsp0v.cn 版權(quán)所有
鄂ICP備17018784號-1
熱門評論
最新評論